Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Strategies for Engineering Reproductive Sterility in Plantation Forests.

Identifieur interne : 000C73 ( Main/Exploration ); précédent : 000C72; suivant : 000C74

Strategies for Engineering Reproductive Sterility in Plantation Forests.

Auteurs : Steffi Fritsche [Nouvelle-Zélande] ; Amy L. Klocko [États-Unis] ; Agnieszka Boron [Nouvelle-Zélande] ; Amy M. Brunner [États-Unis] ; Glenn Thorlby [Nouvelle-Zélande]

Source :

RBID : pubmed:30498505

Abstract

A considerable body of research exists concerning the development of technologies to engineer sterility in forest trees. The primary driver for this work has been to mitigate concerns arising from gene flow from commercial plantings of genetically engineered (GE) trees to non-GE plantations, or to wild or feral relatives. More recently, there has been interest in the use of sterility technologies as a means to mitigate the global environmental and socio-economic damage caused by the escape of non-native invasive tree species from planted forests. The current sophisticated understanding of the molecular processes underpinning sexual reproduction in angiosperms has facilitated the successful demonstration of a number of control strategies in hardwood tree species, particularly in the model hardwood tree Poplar. Despite gymnosperm softwood trees, such as pines, making up the majority of the global planted forest estate, only pollen sterility, via cell ablation, has been demonstrated in softwoods. Progress has been limited by the lack of an endogenous model system, long timescales required for testing, and key differences between softwood reproductive pathways and those of well characterized angiosperm model systems. The availability of comprehensive genome and transcriptome resources has allowed unprecedented insights into the reproductive processes of both hardwood and softwood tree species. This increased fundamental knowledge together with the implementation of new breeding technologies, such as gene editing, which potentially face a less oppressive regulatory regime, is making the implementation of engineered sterility into commercial forestry a realistic possibility.

DOI: 10.3389/fpls.2018.01671
PubMed: 30498505
PubMed Central: PMC6249417


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Strategies for Engineering Reproductive Sterility in Plantation Forests.</title>
<author>
<name sortKey="Fritsche, Steffi" sort="Fritsche, Steffi" uniqKey="Fritsche S" first="Steffi" last="Fritsche">Steffi Fritsche</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scion, Rotorua, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Scion, Rotorua</wicri:regionArea>
<wicri:noRegion>Rotorua</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klocko, Amy L" sort="Klocko, Amy L" uniqKey="Klocko A" first="Amy L" last="Klocko">Amy L. Klocko</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boron, Agnieszka" sort="Boron, Agnieszka" uniqKey="Boron A" first="Agnieszka" last="Boron">Agnieszka Boron</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scion, Rotorua, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Scion, Rotorua</wicri:regionArea>
<wicri:noRegion>Rotorua</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thorlby, Glenn" sort="Thorlby, Glenn" uniqKey="Thorlby G" first="Glenn" last="Thorlby">Glenn Thorlby</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scion, Rotorua, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Scion, Rotorua</wicri:regionArea>
<wicri:noRegion>Rotorua</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30498505</idno>
<idno type="pmid">30498505</idno>
<idno type="doi">10.3389/fpls.2018.01671</idno>
<idno type="pmc">PMC6249417</idno>
<idno type="wicri:Area/Main/Corpus">000B52</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B52</idno>
<idno type="wicri:Area/Main/Curation">000B52</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B52</idno>
<idno type="wicri:Area/Main/Exploration">000B52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Strategies for Engineering Reproductive Sterility in Plantation Forests.</title>
<author>
<name sortKey="Fritsche, Steffi" sort="Fritsche, Steffi" uniqKey="Fritsche S" first="Steffi" last="Fritsche">Steffi Fritsche</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scion, Rotorua, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Scion, Rotorua</wicri:regionArea>
<wicri:noRegion>Rotorua</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klocko, Amy L" sort="Klocko, Amy L" uniqKey="Klocko A" first="Amy L" last="Klocko">Amy L. Klocko</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boron, Agnieszka" sort="Boron, Agnieszka" uniqKey="Boron A" first="Agnieszka" last="Boron">Agnieszka Boron</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scion, Rotorua, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Scion, Rotorua</wicri:regionArea>
<wicri:noRegion>Rotorua</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thorlby, Glenn" sort="Thorlby, Glenn" uniqKey="Thorlby G" first="Glenn" last="Thorlby">Glenn Thorlby</name>
<affiliation wicri:level="1">
<nlm:affiliation>Scion, Rotorua, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Scion, Rotorua</wicri:regionArea>
<wicri:noRegion>Rotorua</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A considerable body of research exists concerning the development of technologies to engineer sterility in forest trees. The primary driver for this work has been to mitigate concerns arising from gene flow from commercial plantings of genetically engineered (GE) trees to non-GE plantations, or to wild or feral relatives. More recently, there has been interest in the use of sterility technologies as a means to mitigate the global environmental and socio-economic damage caused by the escape of non-native invasive tree species from planted forests. The current sophisticated understanding of the molecular processes underpinning sexual reproduction in angiosperms has facilitated the successful demonstration of a number of control strategies in hardwood tree species, particularly in the model hardwood tree Poplar. Despite gymnosperm softwood trees, such as pines, making up the majority of the global planted forest estate, only pollen sterility, via cell ablation, has been demonstrated in softwoods. Progress has been limited by the lack of an endogenous model system, long timescales required for testing, and key differences between softwood reproductive pathways and those of well characterized angiosperm model systems. The availability of comprehensive genome and transcriptome resources has allowed unprecedented insights into the reproductive processes of both hardwood and softwood tree species. This increased fundamental knowledge together with the implementation of new breeding technologies, such as gene editing, which potentially face a less oppressive regulatory regime, is making the implementation of engineered sterility into commercial forestry a realistic possibility.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30498505</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Strategies for Engineering Reproductive Sterility in Plantation Forests.</ArticleTitle>
<Pagination>
<MedlinePgn>1671</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01671</ELocationID>
<Abstract>
<AbstractText>A considerable body of research exists concerning the development of technologies to engineer sterility in forest trees. The primary driver for this work has been to mitigate concerns arising from gene flow from commercial plantings of genetically engineered (GE) trees to non-GE plantations, or to wild or feral relatives. More recently, there has been interest in the use of sterility technologies as a means to mitigate the global environmental and socio-economic damage caused by the escape of non-native invasive tree species from planted forests. The current sophisticated understanding of the molecular processes underpinning sexual reproduction in angiosperms has facilitated the successful demonstration of a number of control strategies in hardwood tree species, particularly in the model hardwood tree Poplar. Despite gymnosperm softwood trees, such as pines, making up the majority of the global planted forest estate, only pollen sterility, via cell ablation, has been demonstrated in softwoods. Progress has been limited by the lack of an endogenous model system, long timescales required for testing, and key differences between softwood reproductive pathways and those of well characterized angiosperm model systems. The availability of comprehensive genome and transcriptome resources has allowed unprecedented insights into the reproductive processes of both hardwood and softwood tree species. This increased fundamental knowledge together with the implementation of new breeding technologies, such as gene editing, which potentially face a less oppressive regulatory regime, is making the implementation of engineered sterility into commercial forestry a realistic possibility.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fritsche</LastName>
<ForeName>Steffi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Scion, Rotorua, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Klocko</LastName>
<ForeName>Amy L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boron</LastName>
<ForeName>Agnieszka</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Scion, Rotorua, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brunner</LastName>
<ForeName>Amy M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thorlby</LastName>
<ForeName>Glenn</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Scion, Rotorua, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">containment</Keyword>
<Keyword MajorTopicYN="N">forest trees</Keyword>
<Keyword MajorTopicYN="N">gene editing</Keyword>
<Keyword MajorTopicYN="N">genetic engineering</Keyword>
<Keyword MajorTopicYN="N">reproduction</Keyword>
<Keyword MajorTopicYN="N">sterility</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30498505</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01671</ArticleId>
<ArticleId IdType="pmc">PMC6249417</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2015 Jun;206(4):1406-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25353719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Sep;15(5):625-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9778845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2005 May;23(5):530-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15877062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25713384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Feb;161(2):813-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23221834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Sep;65(17):4731-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24913630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Jul 31;50(3):435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3649277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 28;7(1):482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28352080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1000-1021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28079940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1052-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Feb;225(3):589-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16953432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 May;27(5):855-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2010 Feb;21(1):118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19944177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Apr;227(5):1001-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18185941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(4):546-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15500470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2006 May;4(3):325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17147638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Apr;31(4):747-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22120011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2016 Feb;35(2):369-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26521210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May 1;62(4):674-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Sep;9(9):1527-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9338959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 May 07;9:594</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29868058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Apr 20;25(8):1050-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25866390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Nov;212(3):730-744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27375201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2018 Jan 10;36(1):6-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29319694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2005 May;24(2):95-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15662500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Oct;163(2):792-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23958861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2008 Aug;17(4):679-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17929189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 Nov;114(7):1407-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 May;36(5):667-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27052434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 20;5:12217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Mar;16(3):151-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21144793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 01;7:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26870055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Oct;14(10):1976-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26920394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Jul 1;13(13):2976-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8039494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Mar;34(3):314-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24682618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2011 Jan;29(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20970211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Sep;15(5):615-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9778844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>GM Crops Food. 2017 Jan 2;8(1):44-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27960622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):370-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2005 May;24(2):69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15690161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Feb;235(2):359-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 30;497(7451):579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 May 30;8:895</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28611810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2016 Sep 8;34(9):918-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27606454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):1967-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2003 Dec;29(3):464-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14615187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 25;7:171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Jan;28(1):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Mar 31;24(7):717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24656832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Nov;11(11):559-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17030144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jul;31(2):161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12121446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Dev. 2003 Nov-Dec;5(6):551-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14984037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Biosafety Res. 2010 Jan-Mar;9(1):25-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21122484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2016 Jun 9;34(6):582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27281401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 May;117(1):55-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1319-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22723085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Nov 03;6:970</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26579190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Jan;27(1):69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7865797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Jan;14(1):260-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25915693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Feb;201(3):717-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24164649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Feb;14(2):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26132805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Dec;196(4):1260-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23020222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):2209-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2003 Aug;22(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12827443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Jun;42(6):566-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11427675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 Jun;33(6):577</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26057961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Naturforsch C. 2018 Jan 26;73(1-2):15-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28455953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2017 Sep 22;10(18):3565-3573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28768066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Mar;25(3):820-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23543784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Bioeng Biotechnol. 2018 Aug 03;6:100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30123794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Allergy. 2007 Sep;62(9):976-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17521313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(1):189-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>GM Crops Food. 2017 Jan 2;8(1):13-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28278120</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Fritsche, Steffi" sort="Fritsche, Steffi" uniqKey="Fritsche S" first="Steffi" last="Fritsche">Steffi Fritsche</name>
</noRegion>
<name sortKey="Boron, Agnieszka" sort="Boron, Agnieszka" uniqKey="Boron A" first="Agnieszka" last="Boron">Agnieszka Boron</name>
<name sortKey="Thorlby, Glenn" sort="Thorlby, Glenn" uniqKey="Thorlby G" first="Glenn" last="Thorlby">Glenn Thorlby</name>
</country>
<country name="États-Unis">
<region name="Colorado">
<name sortKey="Klocko, Amy L" sort="Klocko, Amy L" uniqKey="Klocko A" first="Amy L" last="Klocko">Amy L. Klocko</name>
</region>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30498505
   |texte=   Strategies for Engineering Reproductive Sterility in Plantation Forests.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30498505" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020